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Kazuo Nagasawa,” Isao Shimizu,b and Tadashi Nakata™*

a,
. The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169, Japan

Abstract: The C11-C23 segment of preswinholide A was stereoselectively synthesized based on the
iterative construction of 1,3-polyol chains using a series of sequential reactions which involves the
Sharpless asymmetric epoxidation of allyl alcohol and Pd-catalyzed hydrogenolysis of alkenyl oxirane
with HCOOH as the key reactions. Copyright © 1996 Elsevier Science Ltd

Swinholide A (1), isolated from the marine sponge Theonella swinhoei,l is a C,-symmetrical
44-membered dimeric lactone which consists of two monomeric secoacid units 2. The secoacid 2 named
preswinholide A, which is regarded as the biosynthetic precursor of 1, was also isolated from the same
spongc.2 These complex natural products show potent cytotoxicity against a variety of human tumour cell
lines. The synthetically challenging structures and potent biological activities of 1 and 2 have attracted
considerable attention from synthetic organic chemists.”® The Paterson group has recently accomplished the
first total synthesis of 2% and 1,7 and quite recently the Nicolaou group has reported the total synthesis of 1 2
We have also studied the total synthesis of the swinholides and have already reported the stereoselective
synthesis of the C11-C32 segment of preswinholide A (2) ° In this paper, we report an alternative method for
the highly stereoselective and efficient synthesis of the C11-C23 segment 3, and in the following paper the total
synthesis of preswinholide A (2) will be described.
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Our retrosynthetic analysis divided preswinholide A (2) into three segments, the C1-C8, C9-C23, and
C24-C32 segments, as shown in Scheme 1. The C11-C32 segment would be stereoselectively synthesized
from the C11-C23 aldehyde 3 and the C24-C32 unit 4 using the Evans aldol coupling reaction.” Our strategy
for the synthesis of 3 features the stereoselective and iterative construction of 1,3-polyol chains using a series
of sequential reactions which involves the Sharpless asymmetric epoxidationw (AE) of allylic alcohol and
Pd-catalyzed hydrogenolysis of alkenyl oxirane with HCOOH as the key reactions."'

The optically active o,B-unsaturated ester 6 was prepared from thioacetal 5" by protection of the
hydroxyl group as the MPM ether and deprotection of the thioacetal with Mel, and the Wittig reaction in 99%
yield. After DIBAH reduction of 6, the Sharpless AE of the resulting alcohol 7 with ~-BuOOH in the presence
of (+)-DET and Ti(Oi-Pr), stereoselectively produced the B-epoxy alcohol 8. " The Swern oxidation'* of 8
followed by the Horner-Emmons reaction with (EtO),P(OYCH,CO,Et gave the alkenyloxirane 9 in 84% yield
from 7. Reaction of 9 with HCOOH-Et;N using Pd,(dba),CHCl, and n-Bu,P as catalysts regio- and
stereoselectively gave 15,16-syn-alcohol 10 in 96% yield, which has a component similar to that of the starting
ester 6. Thus, repeating a series of these sequential reactions (DIBAH reduction, Sharpless AE, Swem
oxidation, Wittig reaction, and Pd-catalyzed hydrogenolysis) would convert the ester 10 into the aldehyde 3,
corresponding to the C11-C23 segment, as described hereafter.
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Reagents and conditions: (a) MPMCI, NaH, DMF-THF, rt (97%); (b) Mel, NaHCO3, acetone-H,0, 0 °C ~ rt; (c)
PhgP=C(Me)CO,Et, PhCH, 110 °C (99% 2steps); (d) DIBAH, PhCHg, -78 °C (88%); () +-BUOOH, L-(+)-DET,
Ti(OPr),, 4A-MS, CH,Cly, 23 °C; (f) DMSO, (COCH),, EtgN, CHaCly, 78 °C ~ tt; (g) (E1O),P(O)CH,COEL,
NaH, THF, 0 °C ~ 1t (84% 3 steps); (h) Pd,(dba)sCHCls, n-Bu,P, HCO,H, E%N, dioxane, rt (96%).

Methylation of the hydroxyl group in 1 0 with MeI-Ag2015 followed by DIBAH reduction of the ester 11
afforded the allylic alcohol 12 in 83% yield. The alcohol 12 was effectively converted into the alkenyloxirane
14 in 75% yield via the a-epoxy alcohol 13 by the Sharpless AE,13 Swem oxidation, and Wittig reaction. The
oxirane 14 was then subjected to Pd-catalyzed hydrogenolysis with HCOOH to give the 170-hydroxy ester 15
stereoselectively in 99% yield. After protecting the hydroxyl group as the TBS ether, 15 was converted into
the 19,20-syn-alcohol 17 in 33% overall yield via the o-epoxy ester 16" following a series of sequential
reactions as mentioned above. After deprotection of the TBS ether and protection as the acetonide:,16 the ester
17 was also converted into 21,22-syn-alcohol 20 in 54% overall yield via the B-epoxy ester 1 9% in5s steps.
Pd-catalyzed hydrogenolysis of 16 and 19 with HCOOH regio- and stereoselectively took place to give
19,20-syn-17 and 21,22-syn-20, respectively. Protection of the alcohol 20 with TBSOTf gave the fully
protected ester 21 in 82% yield. Finally, oxidative cleavage of the dobule bond in 21 was completed by
successive treatment with OsO, and Pb(OAc), to give the desired aldehyde 3, corresponding to the C11-C23
segment, in 60% yield, The stereochemistry at C19 to C22 of 3 was confirmed by the NMR analysis of the
d-lactone 22,13 which was prepared from 3 by the selective deprotection of the acetonide with aqg AcOH
followed by oxidation under Fetizon's conditions.
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Reagents and conditions: (a) Mel, Ag,O, CH3CN, 85 °C (100%); (b) DIBAH, PhCHy, -78 °C (83%); (c) t-BuOOH, D-(-)-
DET, T{O#Pr) 4, 4A-MS, CH,Cl,, -23 °C (87%); (d) DMSO, (COCI),, EtsN, CHCl, -78 °C ~ t; (e) Ph;P=C(Me)COEL,
PhCHg, 120 °C (86% 2 steps); (f) Pd,(dba)aCHCls, n-BusP, HCO,H, EtsN, dioxane, rt (39%) (g) TBSCI, imidazole, DMF,
1t (95%); (h) DIBAH, PhCH,, 78 °C (80%); (i) +-BuOOH, D-(-}-DET, TiOiPr),, 4A-MS, CH,Ch, -23 °C (78%): (i)

DMSO, (COCI),, EtsN, CH,Cly, -78 °C ~ i (k) PhgP*CH(Me)COEtBr, n-Buli, THF, 0 °C (74% 2 steps); {I)
Pd,(dba)sCHCla, n-BugP, HCO,H, Et;N, dioxane, 1t (72%); (m) AcOH-H0, 1t (75%); (n) Me,C(OMs),, CSA, CH.Cly, 1t
(88%); (0) DIBAH, PhCHy, -78 °C (93%); (p) +-BUOOH, L-(+)-DET, Ti(Qi-Pr)s, 4A-MS, CH,Ch, -23 °C (76%); (q)

DMSO, (COCl),, EtyN, CH,Clp, 78 °C ~ 1t ; (r) (EtO),P(O)CH,CO,EL, NaH, THF, 0 °C ~ rt (99% 2 steps); (s)

Pd,(dba)sCHCI,, n-BusP, HCO,H, EtgN, dioxane, rt (78%); (t) TBSOTY, 2,6-lutidine, CH,Ch, 0 °C (82%): (u) OsO,,
NMO, acatone-H,0-1-BuOH, rt (71%); (v) Pb(OAc),, PhCHa, rt (85%); (W) AcOH-H,0, rt; (x) Ag,COgcelite, PhCH,,
130 °C (62% 2 steps).

In conclusion, we have accomplished the stereoselective synthesis of the aldehyde 3, corresponding to
the C11-C23 segment, based on the stereoselective and iterative construction of 1,3-polyol chains using a series
of sequential rections, in which Pd-catalyzed stereoselective hydrogenolysis of optically active alkenyoxiranes
was used as the key reaction. The characteristic Pd-catalyzed hydrogenolysis proceeds under mild conditions
and is particularly chemoselective for the alkenyloxirane group. Thus, the iterative construction of 1,3-polyol
chains would be a general and highly efficient method for the synthesis of a variety of natural products having
polypropionate chains.
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